A process is shown in Fig. 8-1 with a manipulated input M, a load input L, and a controlled output C, which could be flow, pressure, liquid level, temperature, composition, or any other inventory, environmental, or quality variable that is to be held at a desired value identified as the set point R. The load may be a single variable or aggregate of variables acting either independently or manipulated for other purposes, affecting the controlled variable much as the manipulated variable does. Changes in load may occur randomly as caused by changes in weather, diurnally with ambient temperature, manually when operators change production rate, stepwise when equipment is switched in or out of service, or cyclically as the result of oscillations in other control loops. Variations in load will drive the controlled variable away from set point, requiring a corresponding change in the manipulated variable to bring it back. The manipulated variable must also change to move the controlled variable from one set point to another. An open-loop system positions the manipulated variable either manually or on a programmed basis, without using any process measurements.
This operation is acceptable for well-defined processes without disturbances. An auto manual transfer switch is provided to allow manual adjustment of the manipulated variable in case the process or the control system is not performing satisfactorily.
A closed-loop system uses the measurement of one or more process variables to move the manipulated variable to achieve control. Closed-loop systems may include feed-forward, feedback, or both. Feedback Control In a feedback control loop, the controlled variable is compared to the set point R, with the difference, deviation, or error e acted upon by the controller to move m in such a way as to minimize the error. This action is specifically negative feedback, in that an increase in deviation moves m so as to decrease the deviation. (Positive feedback would cause the deviation to expand rather than diminish and therefore does not regulate.) The action of the controller is selectable to allow use on process gains of both signs.
The controller has tuning parameters related to proportional, integral, derivative, lag, dead time, and sampling functions. A negative feedback loop will oscillate if the controller gain is too high, but if it is too low, control will be ineffective. The controller parameters must be properly related to the process parameters to ensure closed-loop stability while still providing effective control. This is accomplished first by the proper selection of control modes to satisfy the requirements of the process, and second by the appropriate tuning of those modes.
Feed-forward Control A feed-forward system uses measurements of disturbance variables to position the manipulated variable in variables could be either measured loads or the set point, the former being more common. The feed-forward gain must be set precisely to offset the deviation of the controlled variable from the set point.
Feed-forward control is usually combined with feedback control to eliminate any offset resulting from inaccurate measurements and calculations and unmeasured load components. The feedback controller can either bias or multiply the feed-forward calculation.
Computer Control Computers have been used to replace analog PID controllers, either by setting set points of lower level controllers in supervisory control, or by driving valves directly in direct digital control. Single-station digital controllers perform PID control in one or two loops, including computing functions such as mathematical operations, characterization, lags, and dead time, with digital logic and alarms. Distributed control systems provide all these functions, with the digital processor shared among many control loops; separate processors may be used for displays, communications, file servers, and the like. A host computer may be added to perform high level operations such as scheduling, optimization, and multi variable control. More details on computer control are provided later in this section.
Process Dynamic and Mathematical Model
GENERAL REFERENCES: Seborg, Edgar, and Mellichamp, Process Dynamics and Control, Wiley, New York, 1989; Marlin, Process Control, McGraw-Hill, New York, 1995; Ogunnaike and Ray, Process Dynamics Modeling and Control, Oxford University Press, New York, 1994; Smith and Corripio, Principles and Practices of Automatic Process Control, Wiley, New York, 1985 Open-Loop versus Closed-Loop Dynamics It is common in industry to manipulate coolant in a jacketed reactor in order to control conditions in the reactor itself. A simplified schematic diagram of such a reactor control system is shown in Fig. 8-2.
Assume that the reactor temperature is adjusted by a controller that increases the coolant flow in proportion to the difference between the desired reactor temperature and the temperature that is measured. The proportionality constant is Kc. If a small change in the temperature of the inlet stream occurs, then depending on the value of Kc, one might observe the reactor temperature responses shown in Fig. 8-3. The top plot shows the case for no control (Kc = 0), which is called the open loop, or the normal dynamic response of the process by itself. As Kc increases, several effects can be noted. First, the reactor temperature responds faster and faster. Second, for the initial increases in Kc, the maximum deviation in the reactor temperature becomes smaller. Both of these effects are desirable so that disturbances from normal operation have as small an effect as possible on the process under study. As the gain is increased further, eventually a point is reached where the reactor temperature oscillates indefinitely, which is undesirable. This point is called the stability limit, where
Kc = Ku, the ultimate controller gain.
Increasing Kc further causes the magnitude of the oscillations to increase, with the result that the control valve will cycle between full open and closed. The responses shown in Fig. 8-3 are typical of the vast majority of regulatory loops encountered in the process industries. Figure 8-3 shows that there is an optimal choice for Kc, somewhere between 0 (no control) and Ku (stability limit). If one has a dynamic model of a process, then this model can be used to calculate controller settings.
In Fig. 8-3, no time scale is given, but rather the figure shows relative responses. A well-designed controller might be able to speed up the response of a process by a factor of roughly two to four. Exactly how fast the control system responds is determined by the dynamics of the process itself.